Featured Resources
How much shared scooter parking is needed to meet demand and reduce noncompliant parking? Drawing on Lime data from a dozen cities in the US and Europe, this report provides three key planning and policy recommendations for cities to consider as they work to integrate scooters into the overall transportation system:
While autonomous vehicles are still experimental and nascent in many corners of the U.S., the same kind of unguided tectonic shift seen with the introduction of the automobile nearly a century ago is possible. Autonomous Vehicles: A Guidebook for Cities was created in response to cities seeking to manage and influence autonomous vehicle (AV) pilots and deployments happening on their streets, as well as cities trying to prepare for these pilots. The Guidebook offers considerations, tools, and examples of various ways to manage effectively autonomous vehicle deployments.
This report looks at the potential impacts autonomous vehicle deployment could have on parking demand and how that might impact urban development. The study focused on three distinct areas of San Francisco. The research found that, contrary to headlines about AV impacts on parking, achieving large reductions in parking demand based on AV deployment will not be easy. To achieve significant parking reductions, AVs would need to be shared (not privately owned), pooled (riders willing to pick up other passengers along the way), have widespread geographic deployment (across entire metropolitan areas), and would need to complement high-capacity transit. Without all or most of these factors, parking demand may only by marginally impacted by AV deployment. The study also found that if parking demand could be reduced, different areas of the city would see quite different results. While many areas in San Francisco would see minimal development impacts as parking is not currently a significant driver or limiter of development, more auto-dominated areas could see substantial impacts if parking demand could be reduced by more than 40%. This raises interesting questions of how these levels of parking demand reduction might impact more auto-dominated and suburban areas throughout the country. This research was funded by Waymo.
When the COVID-19 pandemic first swept across North America and led to emergency shutdowns during the Spring of 2020, the way people acquired food and household necessities was dramatically impacted. As stay-at-home orders minimized personal travel, transit services were reduced and many stores and restaurants either closed or modified their operations. Some of the gaps were able to be filled by online retailers and delivery services. However, access to goods and services varied substantially depending on people’s age, income level, and physical ability. A new multi-university study funded by the National Institute for Transportation and Communities (NITC), the U.S. DOT- funded university transportation headquartered at Portland State University, and the National Science Foundation (NSF) captured how households responded as local, state, and federal governments imposed and lifted restrictions, brick-and-mortar establishments closed and reopened, and e-commerce and delivery services adjusted to the changing conditions.
The Knight Autonomous Vehicle (AV) Initiative is a multi-year collaborative effort between the Urbanism Next Center at the University of Oregon, Cityfi, the cities of Detroit, Pittsburgh, and San José, and Miami-Dade County (the “cohort”) to pilot and learn about automated mobility technologies today to shape the future of deployment tomorrow. This cohort partnered with Kiwibot to learn more about a new technology—sidewalk delivery robots. Through this partnership, Kiwibot tested different use cases and collaborated on community engagement opportunities in each locale. Given the proliferation of bills being passed by state legislatures legalizing deployment of personal delivery devices (PDDs) or sidewalk robots, and the increased delivery demand due to the pandemic, the pilots were well timed to able to meaningfully inform the cohort cities about the potential benefits and challenges of sidewalk delivery robots.
This policy brief summarizes some of the key findings from a comprehensive literature review (submitted for publication) on the impact of shared mobility services and GHG emissions.
Urbanism Next Center Director and Professor Nico Larco testified during the congressional hearing, "The Road Ahead for Automated Vehicles." Professor Larco highlighted the work of Urbanism Next and the potential cascading impacts of autonomous vehicles.
AARP Public Policy Institute, RAND Corporation and Urbanism Next collaborated to better understand the ways in which shared mobility and AVs will be impacting older adults. Through a review of literature, interviews with public and private sector players in this arena, and a roundtable with over 25 experts from around the country, the project team developed a framework that identifies a range of factors around new mobility and AVs that will be affecting older adults’ mobility, independence and safety. The framework is a guide for governments and private sector companies to help them think broadly about impacts, understand barriers, and can serve as an internal checklist to guide future policy, research and development.
Using experience from working on the Knight AV Initiative, Urbanism Next created this white paper to provide a foundation for public sector agencies to approach autonomous vehicle deployment and policy with a focus on equity. This report outlines ways that public agencies can identify community needs and shape deployment to ensure that AVs will be accessible for all.
Before the pandemic, Urbanism Next developed a framework organizing the disruptions to cities caused by emerging transportation technologies on land use, urban design, building design, transportation, and real estate. COVID-19 has disrupted the trajectory of these emerging technologies and will, in turn, change some our original assumptions. This paper revisits the original Urbanism Next framework, taking into account the cascading impacts of the pandemic. This report is one of two reports completed by Urbanism Next on the impacts of Covid-19.
How is the COVID-19 pandemic changing urban living? In this paper, we explore the landscape of COVID-19 disruptions to date on land use and real estate, urban design, building design, transportation, e-commerce and retail, and goods delivery. We also highlight the longer-term questions and potential ongoing impacts COVID-19 might have on the built environment.
The Urbanism Next Center at the University of Oregon, in partnership with Alta Planning + Design, Spirit for Change, and Metro hosted the Future of Public Spaces and Placemaking workshop on January 24th, 2020. This one-day workshop, supported by the Knight Foundation, brought together a wide range of community activists, government officials, policymakers, urbanists, planners, designers, technology representatives, and other professionals to share ideas and concerns, and to discuss emerging technologies such as new mobility, Mobility as a Service (MaaS), autonomous vehicles (AVs), and e-commerce, and their impacts on urban space and placemaking. The workshop concluded with a site-specific charrette aimed at investigating how communities can best prepare for these changes and adapt their public spaces to create places that are resilient, dynamic, equitable, and sustainable.
The purpose of this study is to go beyond cataloging pilot projects to determine the lessons learned, emerging trends and considerations, and examples of promising practices from pilot projects in the United States and Canada. Researchers assessed 220 pilot projects and 11 case studies. Based on that assessment, they recommend 10 actions for pilot projects generally. The study resulted in 31 lessons learned organized by pilot goals, evaluation, implementation, outcomes, and policy and infrastructure implications.
This is a fact sheet suitable for use as a printed handout on Urbanism Next's topline research findings regarding micromobility.
Sustainable, inclusive, prosperous, and resilient cities depend on transportation that facilitates the safe, efficient, and pollution-free flow of people and goods, while also providing affordable, healthy, and integrated mobility for all people. The pace of technology-driven innovation from the private sector in shared transportation services, vehicles, and networks is rapid, accelerating, and filled with opportunity. At the same time, city streets are a finite and scarce resource.These principles, produced by a working group of international NGOs, are designed to guide urban decision-makers and stakeholders toward the best outcomes for all.
This framework provides an overview of the work Urbanism Next does and how we approach our research.
Autonomous vehicles (AVs) are a near future reality and the implications of AVs on city development and urban form, while potentially widespread and dramatic, are not well understood. This report describes the first order impacts, or the broad ways that the form and function of cities are already being impacted by forces of change including—but not limited to—AVs and related technologies.
This report categorizes and summarizes efforts that are already underway in cities across the world to rethink curb management, to outline the key takeaways from the one-day workshop that involved city staff from Portland, Seattle, and Vancouver, and to identify major research gaps.
The New Mobility Playbook is a set of plays, policies, and strategies that will position Seattle to foster new mobility options while prioritizing safety, equity, affordability, and sustainability in the transportation system.
The Mobility Hub Reader’s Guide is meant to provide guidance and inspiration for city staff, property owners, developers, designers, transit agencies, and community members for enhancing project developments and public right-of-way improvements in proximity to existing or new transit stations with amenities, activities, and programs to support multi-modal connectivity and access.
Although recent studies of Shared Autonomous Vehicles (SAVs) have explored the economic costs and environmental impacts of this technology, little is known about how SAVs can change urban forms, especially by reducing the demand for parking. This study estimates the potential impact of SAV system on urban parking demand under different system operation scenarios with the help of an agent-based simulation model. The simulation results indicate that we may be able to eliminate up to 90% of parking demand for clients who adopt the system, at a low market penetration rate of 2%. The results also suggest that different SAV operation strategies and client's preferences may lead to different spatial distribution of urban parking demand.
This framework offers planners and community advocates a step-by-step guide to a more community-centered transportation planning process that focuses on the mobility needs of communities and puts affected communities at the center of decision-making. Offers a process for how to prioritize transportation modes/mobility options that are the most equitable and sustainable.
This report combines recently published research and newly available data from a national travel survey and other sources to create the first detailed profile of TNC ridership, users and usage. The report then discusses how TNC and microtransit services can benefit urban transportation, how policy makers can respond to traffic and transit impacts, and the implications of current experience for planning and implementation of shared autonomous vehicles in major American cities.
This report includes information on the first of many research tasks planned for the partnership between SDOT and the Urban Freight Lab. This is the first assessment in any American city of the privately-owned and operated elements of the Final 50 Feet of goods delivery supply chains. These include private truck freight bays and loading docks, delivery policies and operations within buildings located in Center City.
This study examines the potential changes in residential location choice in a scenario where shared autonomous vehicles (SAVs) are a popular mode of travel in the Atlanta metropolitan area. This hypothetical study is based on an agent-based simulation approach, which integrates residential location choice models with a SAV simulation model. The coupled model simulates future home location choices given current home location preferences and real estate development patterns. The results indicate that commuters may relocate to neighborhoods with better public schools and more amenities due to reductions in commute costs.
This edition of the Blueprint is organized into three parts, taking the reader through the principles and political structures that underscore and shape our vision of the future, key policy choices around transit, pricing, freight, and data that can reshape our cities, and finally, exploring the sweeping vision for city streets of the future: Shaping the Autonomous Future Today, Policies to Shape the Autonomous Age, and Design for the Autonomous Age
Technology is transforming transportation. The ability to conveniently request, track, and pay for trips via mobile devices is changing the way people get around and interact with cities. This report examines the relationship of public transportation to shared modes, including bikesharing, carsharing, and ridesourcing services provided by companies such as Uber and Lyft. The research included participation by seven cities: Austin, Boston, Chicago, Los Angeles, San Francisco, Seattle and Washington, DC. The objective of this research analysis is to examine these issues and explore opportunities and challenges for public transportation as they relate to technology-enabled mobility services, including suggesting ways that public transit can learn from, build upon, and interface with these new modes.
This paper discusses the history of shared mobility within the context of the urban transportation landscape, first in Europe and Asia, and more recently in the Americas, with a specific focus on first- and last-mile connections to public transit. The authors discuss the known impacts of shared mobility modes—carsharing, bikesharing, and ridesharing—on reducing vehicle miles/kilometers traveled (VMT/VKT), greenhouse gas (GHG) emissions, and modal splits with public transit. The future of shared mobility in the urban transportation landscape is discussed, as mobile technology and public policy continue to evolve to integrate shared mobility with public transit and future automated vehicles.