Database search is coming soon. In the meantime, use the following categories to explore the database resources:
Passenger AVs
While autonomous vehicles are still experimental and nascent in many corners of the U.S., the same kind of unguided tectonic shift seen with the introduction of the automobile nearly a century ago is possible. Autonomous Vehicles: A Guidebook for Cities was created in response to cities seeking to manage and influence autonomous vehicle (AV) pilots and deployments happening on their streets, as well as cities trying to prepare for these pilots. The Guidebook offers considerations, tools, and examples of various ways to manage effectively autonomous vehicle deployments.
Whim is an app service that consolidates transportation services into a monthly subscription. The app includes access to taxis, public transportation, and rental cars. The app's goal is to reduce vehicle ownership by offering convenient access to multiple alternatives.
The development of automated vehicles is moving into the deployment phase. Automation is being tested in vehicles as well as buses, trains, trucks, and tractors. Some initial deployment could occur in Oregon in the form of pilot programs for a low-speed passenger shuttle and a truck-mounted attenuator. This guide focuses on potential impacts for the next five to fifteen years and discusses policy implications for each use case of automated vehicles.
This report summarizes the major assumptions, predictions and forecasts that have been made for autonomous vehicles. It emphasizes their impact and takes focus on the effects it will have on previously immobile people and what it will take to integrate them legislatively.
On June 13, 2018 Waymo's early rider program hit the one year mark. This article written by Waymo includes some interesting statistics about how the program and who participated.
The Mcity driverless shuttle began operating on the University of Michigan's campus in June 2018. This report focuses on how the researchers collected data and designed the project in order to achieve the project goals of leaning how people react to riding in the shuttles and a how road users interact with the driverless shuttles.
"In 2017, the City of Arlington contracted with the autonomous shuttle company EasyMile to begin the first self-driving shuttle program open to the public in the United States. From August 2017 to August 2018, the Milo vehicles operated on off-street trails that connect major entertainment venues with remote parking areas. The program’s name represents mile zero - the point at which guest arrive at their destination. Milo operated at over 110 events during the program with a perfect safety record."
The Transportation Authority’s “Emerging Mobility Evaluation Report” provides the first comprehensive look at the rapidly evolving emerging mobility sector in San Francisco. The report outlines the range of services operating in San Francisco, covering everything from ride-hail services to autonomous vehicles and microtransit to scooter sharing. In the report, the Transportation Authority evaluates how these services and technologies align with the city’s 10 Guiding Principles related to collaboration, safety, transit, congestion, sustainability, equitable access, accountability, labor, disabled access, and financial impact.
This municipal action guide is meant to give cities the ability to better understand and approach the impending roll out of autonomous vehicles in their cities. We hope to lay out the current typologies of how cities and other levels of government are working together with the private sector to begin to integrate self-driving cars onto the roadways.
This resolution by the Governor of Washington speaks support for the testing of autonomous vehicles in the state of Washington.
"The purpose of this report is to provide an overview of the state of automated vehicle (AV) technology in transit. The Florida Department of Transportation (FDOT) wishes to know what AV technology is currently available that could be used in transit with an eye towards possible demonstration projects."
"Automated driving technologies are currently penetrating the market, and the coming fully autonomous cars will have far-reaching, yet largely unknown, implications. A critical unknown is the impact on traveler behavior, which in turn impacts sustainability, the economy, and well-being. Most behavioral studies, to date, either focus on safety and human factors (driving simulators; test beds), assume travel behavior implications (microsimulators; network analysis), or ask about hypothetical scenarios that are unfamiliar to the subjects (stated preference studies). Here we present a different approach, which is to use a naturalistic experiment to project people into a world of self-driving cars. We mimic potential life with a privately-owned self-driving vehicle by providing 60 h of free chauffeur service for each participating household for use within a 7-day period. We seek to understand the changes in travel behavior as the subjects adjust their travel and activities during the chauffeur week when, as in a self-driving vehicle, they are explicitly relieved of the driving task. In this first pilot application, our sample consisted of 13 subjects from the San Francisco Bay area, drawn from three cohorts: millennials, families, and retirees. We tracked each subject’s travel for 3 weeks (the chauffeur week, 1 week before and 1 week after) and conducted surveys and interviews. During the chauffeur week, we observed sizable increases in vehicle-miles traveled and number of trips, with a more pronounced increase in trips made in the evening and for longer distances and a substantial proportion of “zero-occupancy” vehicle-miles traveled."
This article is an introduction to how AVs may be able to service the general public and become a part of our transit systems.
The purpose of this White Paper is to help cities prepare in advance for autonomous technology by passing formal resolutions and setting in motion Smart Mobility Plans. The document covers: Terminology, Benefits and risks associated with autonomous technology, Common autonomous vehicle deployment phases, How changing transportation technology affects governance, Approaches for harnessing benefits while limiting risks, Examples, Developing resolutions – local context, Conclusion and sample resolution language. The sample language and bullet points can also be used for presentations, policy papers, Comprehensive or Transportation Plan updates and memos. Much of the information is also helpful when drafting policy on other types of technology, including ridehailing/sharing services and smart city technology (e.g., Internet of Things (IoT) and sensors).
Driverless vehicles have unveiled in New York City. For now, they can be found shuttling people around a loop at the Brooklyn Navy Yard.
This White Paper offers a prototype framework for integrated shared, electric and automated mobility (SEAM) governance. The SEAM Governance Framework Prototype has four phases: (i) governance work principles outlining essential approaches to be considered by developers of SEAM governance; (ii) governance visions, including objectives that the authors believe should be embedded in SEAM governance development goals; (iii) governance instrumentation stock, where creative and exhaustive tools for public- and private-sector actors are presented by type and priority (“SEAM rank”); and (iv) policy evaluation tips and tools, which highlight issues that typically impede the evaluation of governance instruments and present evaluation models.
"To better understand the emerging area of low-speed automated shuttles, the U.S. Department of Transportation (USDOT) Intelligent Transportation Systems Joint Program Office (ITS JPO) partnered with the John A. Volpe National Transportation Systems Center (Volpe) to review the current state of the practice of low-speed automated shuttles. These vehicles share many characteristics with other forms of automated vehicles but include unique considerations in terms of design, operations, and service type, including: fully automated driving (intended for use without a driver); operational design domain (ODD) (restricted to protected and less-complicated environments); low speeds (cruising speeds around 10-15 mph); shared service (typically designed to carry multiple passengers, including unrestrained passengers and standees); and shared right-of-way with other road users, either at designated crossing locations or along the right-of-way itself. This report defines design and service characteristics; discusses the deployers, their motivations, and their partners; and provides information on demonstrations and deployments, both international and domestic. The document also provides context on common challenges and suggested mitigations. Building on all of this information, the document identifies several research questions on topics ranging from safety and accessibility to user acceptance and societal impacts."
See something that should be here that isn't? Have a suggestion to make?