Database search is coming soon. In the meantime, use the following categories to explore the database resources:
Rand Corporation
AARP Public Policy Institute, RAND Corporation and Urbanism Next collaborated to better understand the ways in which shared mobility and AVs will be impacting older adults. Through a review of literature, interviews with public and private sector players in this arena, and a roundtable with over 25 experts from around the country, the project team developed a framework that identifies a range of factors around new mobility and AVs that will be affecting older adults’ mobility, independence and safety. The framework is a guide for governments and private sector companies to help them think broadly about impacts, understand barriers, and can serve as an internal checklist to guide future policy, research and development.
This report develops a framework for measuring safety in automated vehicles. It ranges in considerations from measuring safety in artificial development phases to deployment phases.
This report talks about the development AV technology and its implication for low and legislative activity. It also focuses on the standards and regulations for AV technology, liability issues and provide guidance for policymakers.
How safe should highly automated vehicles (HAVs) be before they are allowed on the roads for consumer use? This question underpins much of the debate around how and when to introduce and use the technology so that the potential risks from HAVs are minimized and the benefits maximized. In this report, we use the RAND Model of Automated Vehicle Safety to compare road fatalities over time under (1) a policy that allows HAVs to be deployed for consumer use when their safety performance is just 10 percent better than that of the average human driver and (2) a policy that waits to deploy HAVs only once their safety performance is 75 or 90 percent better than that of average human drivers — what some might consider nearly perfect. We find that, in the long term, under none of the conditions we explored does waiting for significant safety gains result in fewer fatalities. At best, fatalities are comparable, but, at worst, waiting has high human costs — in some cases, more than half a million lives. Moreover, the conditions that might lead to comparable fatalities — rapid improvement in HAV safety performance that can occur without widespread deployment — seem implausible. This suggests that the opportunity cost, in terms of lives saved, for waiting for better HAV performance may indeed be large. This evidence can help decisionmakers better understand the human cost of different policy choices governing HAV safety and set policies that save more lives.
See something that should be here that isn't? Have a suggestion to make?