Database search is coming soon. In the meantime, use the following categories to explore the database resources:
Bhargava Sana
Transportation network companies (TNCs) such as Uber and Lyft have grown tremendously over the last decade, particularly in the San Francisco Bay Area. Nonetheless, relatively little publicly available data exist about the users of these services, their travel behaviors, volume of use, the times and locations of TNC trips, and how TNC services are affecting transportation system performance overall. This paper describes the methods and descriptive results of the first large-scale smartphone-based TNC user survey conducted in the California Bay Area in the fall 2018 and spring of 2019.
Transportation network companies (TNCs), such as Uber and Lyft, have been hypothesized to both complement and compete with public transit. Existing research on the topic is limited by a lack of detailed data on the timing and location of TNC trips. This study overcomes that limitation by using data scraped from the Application Programming Interfaces of two TNCs, combined with Automated Passenger Count data on transit use and other supporting data. Using a panel data model of the change in bus ridership in San Francisco between 2010 and 2015, and confirming the result with a separate time-series model, we find that TNCs are responsible for a net ridership decline of about 10%, offsetting net gains from other factors such as service increases and population growth. We do not find a statistically significant effect on light rail ridership. Cities and transit agencies should recognize the transit-competitive nature of TNCs as they plan, regulate and operate their transportation systems.
See something that should be here that isn't? Have a suggestion to make?